

Deutsches Forschungszentrum für Künstliche Intelligenz German Research Center for Artificial Intelligence

INTRODUCTION

Problem: Current human-pose datasets treat the spine as a single straight line, making it impossible to analyse posture, trunk flexion, or segmental motion in sports and healthcare. We propose:

- **SpineTrack**: first large–scale 2D dataset with **9 vertebral keypoints** + body + feet \rightarrow 25 k synthetic & 33 k real images, 58 k persons
- **SpinePose**: lightweight teacher–student upgrade of RTMPose that learns the extra spine joints *without hurting* COCO/Halpe accuracy
- Anatomical losses : structure and smoothness terms keep the predicted spine physically plausible

Figure 1: SpinePose : teacher–student distillation with anatomical priors.

 $(\mathcal{L}_{\text{total}} = \alpha L_{\text{pos}} + \beta L_{\text{distill}} + \gamma_1 L_{\text{struct}} + \gamma_2 L_{\text{smooth}})$

- **Keypoint** *L*_{pos}: regress GT heat-maps
- **Distill** *L*_{distill}: maintain generalization
- **Structure** *L*_{struct}: bone-angle penalty
- **Smooth** L_{smooth} : curve regulariser along vertebrae

SpinePose-l variant	COCO AP	Halpe26 AP	Spine AP		
Only Keypoint Loss	69.6	72.2	87.0		
+ Distillation	70.8	73.2	87.3		
+ Spine smoothness	74.7	76.6	88.7		
+ Structure	71.2	73.4	87.7		
Full (all losses)	75.2	77.0	88.4		

- Distillation helps retain performance on standard real-world benchmarks
- Smoothness term brings largest spine gain
- Full recipe reaches the best cross-dataset balance

Towards Unconstrained 2D Pose Estimation of the Human Spine Muhammad Saif Ullah Khan, Stephan Krauß, and Didier Stricker German Research Center for Artificial Intelligence (DFKI)

Figure 3: UE5 pipeline \rightarrow 25 k labeled frames.

CONTRIBUTIONS SUMMARY

- **SpineTrack** dataset: 25 k synthetic + 33 k real images with biomechanically validated 9-vertebra annotations.
- Lightweight distillation upgrade adds spine to any RTMPose-style backbone (37 kpts) with *zero* extra backbone parameters.
- New structure and smoothness losses tailored to curved articulated segments.
- +89.6 AP on spine while retaining > 98%COCO/Halpe accuracy; effect consistent across S/M/L backbones.

[1] Tao Jiang, Peng Lu, Li Zhang, Ningsheng Ma, Rui Han, Chengqi Lyu, Yining Li, and Kai Chen. Rtmpose: Real-time multi-person pose estimation based on mmpose, 2023.

[2] Ajay Seth, Michael Sherman, Jeffrey A Reinbolt, and Scott L Delp. Opensim: a musculoskeletal modeling and simulation framework for in silico investigations and exchange. *Procedia Iutam*, 2:212–232, 2011.

Figure 5: Example annotated in-the-wild images (33 k).

DETAILED RESULTS

			Во	dy	Fe	eet	Sp	ine	Ove	erall		
lethod	Train Data	Kpts	AP	AR	AP	AR	AP	AR	AP	AR	Params (M)	FLOPs (G)
TMPose-t TMPose-s pinePose-s	Body8 Body8 SpineTrack	26 26 37	76.9 80.9 <u>79.1</u>	80.0 83.6 <u>82.1</u>	74.1 78.9 <u>77.5</u>	79.7 83.5 <u>82.9</u>	0.0 0.0 89.6	0.0 0.0 90.7	15.8 17.2 84.2	17.9 19.4 86.2	3.51 5.70 5.98	0.37 0.70 0.72
TMPose-m pinePose-m	Body8 SpineTrack	26 37	85.5 84.0	87.9 86.4	84.1 83.5	88.2 87.4	0.0 91.4	0.0 92.5	19.4 88.0	21.4 89.5	13.93 14.34	1.95 1.98
TMPose-l TMW-m imCC-ResNet50 pinePose-l	Body8 Cocktail14 COCO SpineTrack	26 133 17 37	86.8 84.3 81.8 <u>85.4</u>	89.2 86.7 85.2 <u>87.7</u>	86.9 83.0 0.0 <u>85.5</u>	90.0 87.2 0.0 <u>89.2</u>	0.0 0.0 0.0 91.0	0.0 0.0 0.0 92.2	20.0 6.2 0.0 88.4	22.0 7.6 0.2 90.0	28.11 32.26 36.75 28.66	4.19 4.31 5.50 4.22
imCC-ResNet50* TMPose-x* TMW-1* TMW-1* TMW-1* pinePose-x*	COCO Body8 Cocktail14 Cocktail14 SpineTrack	17 26 133 133 37	83.2 88.6 86.0 <u>87.3</u> 86.3	86.2 90.6 88.3 <u>89.9</u> 88.5	0.0 88.4 85.6 <u>88.3</u> 86.3	0.0 91.4 89.2 <u>91.3</u> 89.7	0.0 0.0 0.0 0.0 89.3	0.0 0.0 0.0 0.0 91.0	0.0 21.0 6.5 6.9 88.3	0.3 22.9 8.1 8.6 89.9	43.29 50.00 57.20 57.35 50.69	12.42 17.29 7.91 17.69 17.37

REFERENCES

Feel free to reach out at mukh07@dfki.de if you have any more questions.

Figure 6: SpinePose accurately predicts extended spine joints in different everyday and sporting activities.

LEARN MORE

