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Problem: Current human-pose datasets treat the spine as a single straight line, making it impossible to
analyse posture, trunk flexion, or segmental motion in sports and healthcare. We propose:
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e SpineTrack: first large—scale 2D dataset with 9 vertebral keypoints + body + feet
— 25 k synthetic & 33 k real images, 58 k persons

 SpinePose: lightweight teacher-student upgrade of RTMPose that learns the extra spine joints
without hurting COCO/Halpe accuracy

* Anatomical losses: structure and smoothness terms keep the predicted spine physically plausible

Figure 4: Active-learning loop for SpineTrack-Real
with human-in-the-loop pipeline.
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DETAILED RESULTS
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Figure 1: SpinePose : teacher—student distillation with

anatomical priors. Rty Sockground Lol pemerone Jefit] Seeuone baskorouncs } Method Train Data  Kpts AP AR AP AR AP AR AP AR  Params (M) FLOPs (G)
(Ltotal = aLpos + BLgistin + V1 Lstruct + Y2 Lsmooth) RTMPose-t Body$ 26 769 800 741 797 00 00 158 179 3.51 0.37
RTMPose-s Body8 26 809 836 789 835 00 00 172 194 5.70 0.70
: inePose- ineT 7 791 8.1 77 2. . 7 84.2 2 . 72
o Keypomt Lpos: regress GT heat—maps SpinePose-s SpineTrack 3 791 821 775 829 89.6 90 8 86 5.98 0
.y o N S : RTMPose-m Body8 26 855 879 841 882 00 00 194 214 13.93 1.95
o Distill Lgisn: maintain generalization o ko [%m"J SpinePose-m SpineTrack 37 840 864 835 874 914 925 88.0 89.5 14.34 1.98
: _ = {1 millon frames) R sk ramey
* Structure Lgct: bone-angle penalty ‘ ’ i RTMPose-1 Body8 26 868 892 869 900 00 00 200 220 28.11 4.19
e Smooth L L. curve re ulariser alon ) . . RTMW-m Cocktaill4 133 843 86.7 83.0 87.2 0.0 0.0 6.2 7.6 32.26 4.31
b smoot 5 5 Figure 3: UE5 pipeline — 25 k labeled frames. SimCC-ResNet50  COCO 17 818 82 00 00 00 00 00 02 36.75 5.50
vertebrae SpinePose-1 SpineTrack 37 854 877 855 892 91.0 922 884 90.0 28.66 4.22
; . . SimCC-ResNet50*  COCO 17 82 82 00 00 00 00 00 03 43.29 12.42
SpinePose-l variant  COCO AP Halpe26 AP Spine AP RTMPose-x* Body8 26 886 90.6 884 914 00 00 210 229 50.00 17.29
Only Keypoint Loss 69.6 79 9 870 RTMW-1* Cocktaill14 133 86.0 38.3 85.6 89.2 0.0 0.0 6.5 8.1 57.20 7.91
+ Distillation 70.8 73.2 8773 < . . RTMW-1* Cocktail14 133 ﬂ @ @ M 0.0 0.0 6.9 8.6 57.35 17.69
- " SpineTrack dataset: 25 k synthetic + 33 k SpinePose-x* SpineTrack 37 863 885 863 897 89.3 910 883  89.9 50.69 17.37
+ Spine smoothness 74.7 76.6 88.7 : : : : :
+ Structure 719 73 4 87 7 real images with biomechanically validated
Full (all losses) 75.2 77.0 88.4 9-Vertebra annotations.

e Distillation helps retain performance on
standard real-world benchmarks

 Smoothness term brings largest spine gain

e Full recipe reaches the best cross-dataset
balance

Lightweight distillation upgrade adds spine
to any RTMPose-style backbone (37 kpts)
with zero extra backbone parameters.

New structure and smoothness losses tai-
lored to curved articulated segments.

+89.6 AP on spine while retaining > 98%

COCO/Halpe accuracy; etfect consistent
across S/M/L backbones.
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